
Based on the Harvest environment from:  

Leibo, J. Z., Zambaldi, V., Lanctot, M., Marecki, J., & Graepel, T. (2017). Multi-agent 

reinforcement learning in sequential social dilemmas. In Proceedings of the 16th 

Conference on Autonomous Agents and MultiAgent Systems (pp. 464-473). 

 

Original environment: Harvest 
A tragedy-of-the-commons dilemma in which apples regrow at a rate that depends on the 

amount of nearby apples. If individual agents employ an exploitative strategy by greedily 

consuming too many apples, the collective reward of all agents is reduced. 

The dilemma is as follows. The short-term interests of each individual leads toward harvesting 

as rapidly as possible. However, the long-term interests of the group as a whole are advanced 

if individuals refrain from doing so, especially when many agents are in the same local region. 

Such situations are precarious because the more harvesting agents there are, the greater the 

chance of permanently depleting the local resources. Cooperators must abstain from a 

personal benefit for the good of the group 

Specification 
The goal of the Harvest game is to collect apples. Each apple provides a reward of 1. The apple 

regrowth rate varies across the map, dependent on the spatial configuration of uncollected 

apples: the more nearby apples, the higher the local regrowth rate. If all apples in a local area 

are harvested then none ever grow back. After 1000 steps the episode ends, at which point the 

game resets to an initial state. 

Implementation 
Based on the code from:  

https://github.com/tiagoCuervo/CommonsGame 

Which can be solved applying deep reinforcement learning like in: 

https://github.com/tiagoCuervo/PPO-harvest 

https://github.com/eugenevinitsky/sequential_social_dilemma_games 

https://github.com/social-dilemma/multiagent 

Since it applies the Gym environment, any algorithm implementation for a Gym environment 

should also naturally work: 

https://gym.openai.com/ 

 

 

 

 

 

https://arxiv.org/abs/1702.03037
https://arxiv.org/abs/1702.03037
https://github.com/tiagoCuervo/CommonsGame
https://github.com/tiagoCuervo/PPO-harvest
https://github.com/eugenevinitsky/sequential_social_dilemma_games
https://github.com/social-dilemma/multiagent
https://gym.openai.com/


 

 

 

 

 

 

 

Our adaptation  

Beneficence 
Our model slightly changes the environment. First, we make the agents keep in mind how 

many apples they have taken, and also allow them the possibility to donate some of the 

collected apples to a common pool. 

The main idea is that there is a source of inequality between the agents, that is, some of them 

are more fit for surviving because either they are less likely to get ill than the rest, or because 

they are more efficient at collecting apples (they are faster). You can select which of them is 

the source of inequality. They are bot additions to the original environment. 

The objective is thus that, at the end of the simulation (which can represent harvesting 

season), each agent has enough food to survive. 

This way, we can consider the moral value of beneficence.  

The agents can either take directly from this common pool or restrict it and only distribute 

these apples at the end of the simulation with a formula. As it is, it there are no restrictions 

whatsoever. 

 

Ecology preservation 
Similarly, we can also consider the moral value of ecology preservation to solve the original 

problem of the harvesting game: that apples do not become extinct. This can also be seen as a 

subtask, because if there are no apples left, then agents will also die from starvation. 

Alternatively, we can consider that ecology preservation is not a priority in our environment 

and slightly alter the environment dynamics so that apples never become extinct. 

You will also need to decide how to handle the fact that agents can use beam guns. Do you 

consider that unethical and thus banned? Or do you consider it permissible? Recall that in the 

original harvesting game, beam guns are applied to actually regulate the environment and 

avoid that apples become extinct. 

You will need to define the reward function to decide what are the ethical priorities of the 

agents and then test with some reinforcement learning algorithm what are the behaviours 

actually learnt by the agents. 

 



 

 

 

 

 

 

 

 

 

Code documentation 

Usage 
It is required that you install the following packages: 

- Gym 

- Pycolab 

- Matplotlib 

- Numpy 

- Scipy 

 

Example and how to use it 
The code provides a Gym Environment with all its logic behind. An example usage is provided 

in Example.py, which should not be surprising for anyone already familiar with gym.   

Essentially, once an Environment is created with 

env = gym.make('CommonsGame:CommonsGame-v0', numAgents=numAgents, 

visualRadius=4, fullState=False, tabularState=False) 

env.reset() 

 

It is ready to be used with any reinforcement learning algorithm. Remember that you input the 

agents’ actions with the step method, which also provides as an output the resulting state 

(either a full state or simply an observation for each agent), each agents’ reward, and whether 

or not the agent has arrived to a finishing state. Everything with the line: 

nObservations, nRewards, nDone, nInfo = env.step(nActions) 

 

As an extra, outside the reinforcement learning algorithm, when the game is finished we 

provide some statistics about how many apples were collected and donated by each agent. 

 



Configuring the example 
The environment can be configured in several ways. We enumerate now the ones related with 

changing the environment itself: 

- We can specify if we want the tinyMap (for tabular reinforcement learning) or the 

smallMap or bigMap (for deep reinforcement learning).  

- We can specify the number of agents with  numAgents. As it is, do not select more 

than 2 agents for smallMap, 4 agents for smallMap or 13 agents for bigMap. 

Then we have some related with the configuration of the agents. If they can see a full state or 

only an observation. 

- If fullState is set to True, then the agent observes the whole environment. If not, it 

only receives an observation (a POMG). 

- We can also select if we want the agent to observe the state as a simplified matrix 

table via setting tabularState=True. This automatically sets fullState to True, as well. 

Use it if you want to use tabular reinforcement learning, but be wary that with 

smallMap or bigMap it will be highly inefficient.  

- If tabularState is set to False, the agent instead receives an screenshot of the game as 

the state. It can be partial or not, depending on the value of fullState. 

- If fullState is set to false, we need to specify the visual radius of each agent with 

visualRadius. Otherwise, this value is irrelevant. 

 

Each agent is capable of performing 10 different actions, with each associated with an integer 

number: 

MOVE_UP = 0 

MOVE_DOWN = 1 

MOVE_LEFT = 2 

MOVE_RIGHT = 3 

 

TURN_CLOCKWISE = 4 

TURN_COUNTERCLOCKWISE = 5 

STAY = 6 

SHOOT = 7 

DONATE = 8 

TAKE_DONATION = 9 

 

MOVE actions (0-3) are always relative to the orientation of the agent, which is modified by 

TURN actions (4-5). STAY (6) does nothing and SHOOT (7) zaps a yellow beam in the same 

direction as the agent’s orientation. 

Every time the agent moves to a position with an apple below, the apple is removed from the 

environment and the agent gets an apple (represented by a green pixel appearing at the top of 

the screen). If the agent has more than one apple accumulated, two contiguous green pixels 

appear.  

The new ones with respect with the original Harvest environment are actions DONATE (8) and 

TAKE_DONATION (9).   DONATE (8) removes an apple from the agent (if it has any) and gives it 

to a common pool (invisible). Conversely, the agent can take an apple from the common pool 

to itself with TAKE_DONATION (9). 



 

 

If you want to limit the action space of the agent, it is a matter if simply not allowing to choose 

the integer numbers associated with the undesired actions every time the agent needs to act. 

For instance, for tinyMap we can consider that actions 4, 5 and 7 are irrelevant if we consider a 

simplified environment in which the agent does not shoot. You can configure this as you 

desire. 

 

 

 

The Environment Itself 
The file env.py  is the wrapper with the classes necessary to be integrated with the gym 

environment. Very little of the environment logic is here. Instead, it is located in the objects.py 

file. 

In objects.py we have a class for each kind of object in the environment and its logic (what is 

the effect of each action in terms of states and rewards, etc). Thus, we have a class for (in the 

code order): 

- The agents 

- The agents’ sight (represented by a darkish pixel), indicating to which direction is the 

agent looking at. 

- The agents’ shoot (the beam itself). This does not control whether an agent is 

hit or not, which is actually controlled in the agents class. 

- The apples. Furthermore, this class fully control the rewards that the agent receives. 

Everything related with the reward function is handled here. 

 

So if you want to change anything related with the game’s logic, you will need to edit this file.  

 

You do not need to check the auxiliar files setup.py and utils.py 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Altering the reward function 
If you take a look at constant.py you will see that you have at your disposal several parameters 

you can play with to decide the reward function of your environment and how do you want 

ethical behaviours to be rewarded. 

 

There are also some parameters that do not directly modify the reward function but are so 

related that we considered that it would ease your work if we put them here. We start 

explaining them: 

 

TIMEOUT_FRAMES = 25 

AGENTS_CAN_GET_SICK = False 

AGENTS_HAVE_DIFFERENT_EFFICIENCY = True  

TOO_MANY_APPLES = 3 

SUSTAINABILITY_MATTERS = True  # If False, apples ALWAYS regenerate 

REGENERATION_PROBABILITY = 0.05  # Only matters if SUSTAINABILITY does 

not matter 

respawnProbs = [0.01, 0.05, 0.1] 

 

- TIMEOUT_FRAMES are the number of frames that an agent disappears after being 

shot or becoming sick. While an agent is disappeared from the environment, it cannot 

make any action.  

- AGENTS_CAN_GET_SICK: if it is set to True, each agent then has a probability of 

getting sick (created from an uniform distribution when creating the environment, you 

can change it as you wish). At every frame, it is decided if the agent becomes sick or 

not.  The values do not change after resetting the environment. 

- AGENTS_HAVE_DIFFERENT_EFFICIENCY: The alternative option to create inequality. If 

it is set to True, each agent then has a different efficiency rate (created from an 

uniform distribution when creating the environment, you can change it as you wish), 

which affects how many apples they can get at each turn. The values do not change 

after resetting the environment.  An efficient agent still gets the same rewards as any 

other agent for the same actions. So, for instance, if the efficient agent collects 4 



apples in one turn, and another agent only collects 1, both of them will receive a 

reward of +1. 

- TOO_MANY_APPLES: it decides how many apples are too many for any agent to have. 

For instance, because it does not require any more to survive, or because if it gets 

more, the sustainability of the ecosystem becomes endangered. There are many 

possibilities here, and this parameter can be altered to become much more complex.  

- SUSTAINABILITY_MATTERS: it decides if we want to take into account that apples 

need to be gathered in an ecological way. This is a critical parameter that changes the 

whole point of the experiments. For simplicity, if using tabular reinforcement learning 

it should be set to False.  The main environmental change that it creates is that apples 

always regenerate if this is set to False. 

- REGENERATION_PROBABILITY: if sustainability does not matter 

(SUSTAINABILITY_MATTERS=False), this parameter decides the probability that an 

apple spot gets regenerated. Change the probability as you decide.  

- respawnProbs: if sustainability matters, these are the probabilities that decide apple  

regeneration. Notice that they change depending on how many apples are left.  

 

 

Then we have the parameters that change the reward function. We have classified them 

considering if they should be positive or negative, but you can actually set them as you wish 

(and to deactivate them it is simply a matter of setting them to 0). 

 

 

# Positive rewards 

DONATION_REWARD = 1.0 

TOOK_DONATION_REWARD = 1.0 

APPLE_GATHERING_REWARD = 1.0 

DID_NOTHING_BECAUSE_MANY_APPLES_REWARD = 1.0  # related with 

sustainability probably 

 

Positive rewards: 

- DONATION_REWARD: A reward for donating an apple (if the agent has any apple to 

donate). This is for an altruistic agent. An unethical agent would have here  a negative 

reward because it is losing an apple after all. 

- TOOK_DONATION_REWARD: A reward for receiving a donated apple (the logic is that 

agents seek apples, and thus every time they receive an apple they should be happy 

about it). 

- APPLE_GATHERING_REWARD: A reward for taking an apple from the ground. 

- DID_NOTHING_BECAUSE_MANY_APPLES_REWARD: This makes more sense in an 

environment where sustainability matters. The logic is that if the agent has 

TOO_MANY_APPLES (and thus, it has enough to survive), it does not need to collect 

more. An ethical agent would receive a positive reward every time it decides to not 

move while having TOO_MANY_APPLES. 

 



# Negative rewards 

TOO_MANY_APPLES_PUNISHMENT = -1.0  # related with sustainability  

SHOOTING_PUNISHMENT = -1.0 

 

Negative rewards: 

- TOO_MANY_APPLES_PUNISHMENT: This makes more sense in an environment where 

sustainability matters. The logic is that if the agent has TOO_MANY_APPLES (and thus, 

it has enough to survive), it does not need to collect more. An ethical agent would 

receive a punishment every time it decides to collect another apple while having 

TOO_MANY_APPLES (either from the ground or from a donation). 

- SHOOTING_PUNISHMENT: shooting is unethical, and thus agents should receive a 

punishment for shooting. 

 

In order to get familiar with the code, if you want to make any structural change to the 

environment, it can be a very good exercise to look how are all these variables used in the 

code. 

 

Understanding tabular states 
 

We will explain them with examples. 

 

 

 

We represent this state in a one-dimensional list as: 



[32 64 32 45 32 32 64 32 32 32 32 

 32 32 32 65 64 32 32 64 32 64 32  

32 32  32 64 64 64 32 64 64 64 32  

32 32 46 46 46 46 66 32 64 32 32  

32 32 32 32 32 32 32 32 32 32 64   

2  4 38  6  4  7 47  3 0] 

 

We have here divided in columns for better readability. The size of the state will depend on 

both the number of agents on it and also the map chosen. 

First, we have the encoding of the map, where each number represents a kind of cell: 

32 – empty cell 

45 – always near the agent, represents the direction towards it is looking (and only appears if 

behind there is an empty cell) 

46 – where a laser is being shut. 

64 – a cell with an apple. 

65, 66, … - each of these represent an agent. Each agent has a different number, always higher 

than 64. 

Finally, in what here we show as the final row, we have the information specific to each agent. 

For instance, here we have 2  4 38  6  4  7 47  3 0. That means: 

- The agent 1 is  in position (2, 4). It currently has 38 apples and has donated 6. 

- The agent 2 is in position (4,7). It currently has 47 apples and has donated 3. 

- There are currently 0 apples in the common pool. 

If we had more agents, we would have 4 extra number for each agent. Notice that we can 

easily obtain from these data how many apples in total has collected each agent, and how 

many apples in total have donated. 

Very important: in order to avoid that the space state explodes (in case that you are using 

tabular “classic” RL), you should not give the state as it is to each agent. Some ideas to simplify 

the state space: 

- Indispensable: only pass to each agent the information about the number of apples 

owned by itself. Each agent does not even need to know how many apples it has 

donated. Remember that the agent already knows its position because it has the full 

map. 

- Indispensable: Furthermore, the agent only needs to know if it has either 0 apples, 1 

apple or more. Thus, assuming  n_owned is the number of apples currently owned by 

the agent, you can give it to the agent as min(n_owned, 2). Then, if the agent has 

TOO_MANY_APPLES, give it a value of 3, for instance. Notice that this is already 

implemented for the Deep RL case. 



- Indispensable: shooting the beam is not even an option, and thus it is not necessary 

that agents turn around, you can also change any 45 that appears within the state with 

a 32. Recall that 45 shows the direction towards the agent is looking (only if it is an 

empty cell), and 32 shows an empty cell. Be careful of not changing this 45 if it is the 

number of apples collected or donated by some agent. 

 

Here you have another example: 

 

[32 64 32 32 32 32 32 45 32 32 32  

 32 32 32 64 64 32 32 65 32 64 32  

 32 32 64 66 32 64 32 64 64 64 32  

 32 32 32 64 64 32 32 32 64 32 32  

32 32  32 32 32 32 32 32 32 32 32   

4  8     26  5    5  3  15  4 1] 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

What you need to do 
1. Decide what you want to test in your experiments. Either Beneficence or Beneficence + 

Ecology Preservation. Also, in the case of Beneficence you will need to decide either if (a) 

agents can get ill; or (b) some agents are more efficient than others. 

Also, you need to decide how many agents you want to consider. However, this decision will 

depend on whether you use Deep RL or Tabular RL, and also on the map you decide to use for 

your experiments. 

Remember: We can specify the number of agents with  numAgents. Do not select more than 2 

agents for smallMap, 4 agents for smallMap or 13 agents for bigMap. 

 

2. Depending on your previous decision, decide how to set all the constants and rewards that 

have been explained in the section Altering the reward function. For some of them you will 

need to decide a range of values for your experiments. 

In particular, you will also need to decide if you want to use a more complex formula for 

deciding if an agent has enough apples. As it is right now, it is simply a constant 

(TOO_MANY_APPLES). You can modify it to be a formula that takes into account how many 

apples are left in the environment, how many apples have the other agents, etc. 

After deciding, set your values accordingly in constant.py 

 

3. Decide if you are going to use Deep Reinforcement Learning  or Tabular (“Classic”) 

Reinforcement Learning. 

- If you choose Deep RL, you need to decide if the agents will have as their own states: 

 a) The full state selecting   

fullState= True 

when creating the environment (you have an example in example.py) . 

b) Or a partial observation, in which case you need to specify the radius of sight of each agent 

(at your own discretion). The bigger the visual radius the more the agents will know, but also 

the harder it will be for them to learn. 

visualRadius=2, fullState=False, 

 



You can use either the smallMap or the bigMap with Deep RL, although it is recommended 

that you start your experiments with smallMap in order to know if everything is working 

properly. 

- If you choose Tabular RL, you need to create your own abstraction of the state for each 

agent, as it has been explained in section Understanding tabular states. 

Also, when creating the environment, you need to select the following option: 

tabularState= True 

 

Also, it is highly recommended that you use tinyMap with Tabular RL, or at most smallMap. 

Furthermore, you will also need to limit the action space, this should be done simply removing 

tje integers associated with the now impossible actions. This is further explained in section 

Configuring the example. 

 

4. With all set, it is the time you make the agents learn. You need to write some 

Reinforcement Learning algorithm and apply it to the environment you have configured. 

Learning.py gives you a template in case you do not know how to start, but feel free to start 

from a blank python file if you wish. 

If you do not know how to start using the Gym environment, take a look at the official tutorial: 

https://gym.openai.com/docs/ 

And here you have an example application with Q-learning for a single-agent environment: 

https://towardsdatascience.com/reinforcement-learning-with-openai-d445c2c687d2 

 

5. While the agents are training, and afterwards, you need to evaluate what they have learnt 

and if your ethical objectives have been fulfilled. Make the statistical analysis that you deem 

necessary, and utilise the ethical metrics that you consider appropriate. For this, we give you 

some bibliography so it can inspire you: 
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